Hinzufügen eines Trends oder einer gleitenden Durchschnittszeile zu einem Diagramm Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Luftblase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) bei oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem festen Raum, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie darstellt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus der Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Anzahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. Berechnen des gleitenden Durchschnitts in Excel In diesem kurzen Tutorial erfahren Sie, wie Sie schnell einen einfachen gleitenden Durchschnitt in Excel berechnen können, welche Funktionen zu verwenden sind Erhalten Sie einen gleitenden Durchschnitt für die letzten N Tage, Wochen, Monate oder Jahre und wie Sie eine gleitende durchschnittliche Trendlinie zu einem Excel-Diagramm hinzufügen. In ein paar neuere Artikel haben wir einen genauen Blick auf das Berechnen des Durchschnitts in Excel genommen. Wenn Sie unseren Blog verfolgt haben, wissen Sie bereits, wie Sie einen normalen Durchschnitt berechnen und welche Funktionen verwenden, um einen gewichteten Durchschnitt zu finden. In der heutigen Tutorial, werden wir diskutieren zwei grundlegende Techniken, um gleitende Durchschnitt in Excel zu berechnen. Was ist gleitender Durchschnitt Generell kann der gleitende Durchschnitt (auch als gleitender Durchschnitt, laufender Durchschnitt oder beweglicher Mittelwert) als eine Reihe von Durchschnittswerten für verschiedene Teilmengen desselben Datensatzes definiert werden. Es wird häufig in der Statistik verwendet, saisonbereinigte Wirtschafts-und Wettervorhersage zugrunde liegenden Trends zu verstehen. Im Aktienhandel ist der gleitende Durchschnitt ein Indikator, der den Durchschnittswert eines Wertpapiers über einen bestimmten Zeitraum darstellt. Im Geschäft, seine eine gängige Praxis, um einen gleitenden Durchschnitt der Verkäufe für die letzten 3 Monate zu berechnen, um den letzten Trend zu bestimmen. Zum Beispiel kann der gleitende Durchschnitt der dreimonatigen Temperaturen berechnet werden, indem man den Durchschnitt der Temperaturen von Januar bis März, dann den Durchschnitt der Temperaturen von Februar bis April, dann von März bis Mai und so weiter. Es gibt verschiedene Arten von gleitenden Durchschnitt wie einfache (auch als Arithmetik), exponentiell, variabel, dreieckig und gewichtet. In diesem Tutorial werden wir in den am häufigsten verwendeten einfachen gleitenden Durchschnitt suchen. Berechnen einfachen gleitenden Durchschnitt in Excel Insgesamt gibt es zwei Möglichkeiten, um einen einfachen gleitenden Durchschnitt in Excel - mit Formeln und trendline Optionen. Die folgenden Beispiele zeigen beide Techniken. Beispiel 1. Gleitender Durchschnitt für einen bestimmten Zeitraum berechnen Ein einfacher gleitender Durchschnitt kann mit der Funktion AVERAGE im Handumdrehen berechnet werden. Angenommen, Sie haben eine Liste der durchschnittlichen monatlichen Temperaturen in Spalte B, und Sie möchten einen gleitenden Durchschnitt für 3 Monate zu finden (wie in der Abbildung oben). Schreiben Sie eine übliche AVERAGE-Formel für die ersten 3 Werte und geben Sie sie in die Zeile ein, die dem dritten Wert von oben entspricht (Zelle C4 in diesem Beispiel), und kopieren Sie die Formel dann auf andere Zellen in der Spalte: Sie können die Spalte mit einer absoluten Referenz (wie B2), wenn Sie möchten, aber achten Sie darauf, relative Zeilenreferenzen (ohne das Zeichen) zu verwenden, so dass die Formel richtig für andere Zellen passt. Denken Sie daran, dass ein Durchschnitt durch Addition von Werten und dann durch Addition der Summe durch die Anzahl der zu mittelnden Werte berechnet wird, können Sie das Ergebnis anhand der SUM-Formel verifizieren: Beispiel 2. Gleitender Durchschnitt für die letzten N Tage / Wochen / Monate / Jahre in einer Spalte Angenommen, Sie haben eine Liste von Daten, zB Verkauf Zahlen oder Aktienkurse, und Sie wollen wissen, den Durchschnitt der letzten 3 Monate zu einem beliebigen Zeitpunkt. Dazu benötigen Sie eine Formel, die den Durchschnitt neu berechnen wird, sobald Sie einen Wert für den nächsten Monat eingeben. Was Excel-Funktion ist in der Lage, dies zu tun Die gute alte AVERAGE in Kombination mit OFFSET und COUNT. DURCHSCHNITT (OFFSET (erste Zelle COUNT (Gesamtbereich) - N, 0, N, 1)) wobei N die Anzahl der letzten Tage / Wochen / Monate / Jahre ist. Nicht sicher, wie Sie diese gleitende Durchschnittsformel in Ihren Excel-Arbeitsblättern verwenden Das folgende Beispiel wird die Dinge klarer machen. Angenommen, die Werte zum Mittelwert in Spalte B beginnen in Zeile 2, die Formel wäre wie folgt: Und jetzt wollen wir versuchen zu verstehen, was diese Excel-gleitende durchschnittliche Formel tatsächlich tun. Die COUNT-Funktion COUNT (B2: B100) zählt, wie viele Werte bereits in Spalte B eingegeben sind. Wir zählen in B2, da Zeile 1 der Spaltenkopf ist. Die OFFSET-Funktion nimmt die Zelle B2 (das erste Argument) als Ausgangspunkt an und verschiebt die Zählung (den durch die COUNT-Funktion zurückgegebenen Wert) durch Verschieben von 3 Zeilen nach oben (-3 im zweiten Argument). Als Ergebnis gibt es die Summe von Werten in einem Bereich, der aus 3 Zeilen (3 im 4. Argument) und 1 Spalte (1 im letzten Argument) besteht, was die letzten 3 Monate ist, die wir wollen. Schließlich wird die zurückgegebene Summe an die Funktion AVERAGE übergeben, um den gleitenden Durchschnitt zu berechnen. Spitze. Wenn Sie mit kontinuierlich aktualisierbaren Arbeitsblättern arbeiten, in denen neue Zeilen zukünftig wahrscheinlich hinzugefügt werden sollen, müssen Sie eine ausreichende Anzahl von Zeilen an die COUNT-Funktion liefern, um potenzielle neue Einträge zu berücksichtigen. Es ist kein Problem, wenn Sie mehr Zeilen als tatsächlich benötigt, solange Sie die erste Zelle rechts, die COUNT-Funktion werden alle leeren Zeilen sowieso verwerfen gehören. Wie Sie wahrscheinlich bemerkt haben, enthält die Tabelle in diesem Beispiel Daten für nur 12 Monate, und doch wird der Bereich B2: B100 an COUN geliefert, nur um auf der Speicherseite zu sein :) Beispiel 3. Gleitender Durchschnitt für die letzten N Werte in Eine Zeile Wenn Sie einen gleitenden Durchschnitt für die letzten N Tage, Monate, Jahre usw. in der gleichen Zeile berechnen wollen, können Sie die Offset-Formel auf diese Weise anpassen: Angenommen, B2 ist die erste Zahl in der Zeile und Sie wollen Um die letzten 3 Zahlen im Durchschnitt einzuschließen, nimmt die Formel die folgende Form an: Erstellen eines Excel-gleitenden Durchschnittsdiagramms Wenn Sie bereits ein Diagramm für Ihre Daten erstellt haben, ist das Hinzufügen einer gleitenden durchschnittlichen Trendlinie für dieses Diagramm eine Frage von Sekunden. Dazu verwenden wir die Excel Trendline-Funktion und die detaillierten Schritte folgen unten. Für dieses Beispiel hat Ive ein 2-D Säulendiagramm (Insert tab gt Charts group) für unsere Verkaufsdaten erstellt: Und nun wollen wir den gleitenden Durchschnitt für 3 Monate visualisieren. In Excel 2010 und Excel 2007, gehen Sie zu Layout gt Trendline gt Weitere Trendline-Optionen. Spitze. Wenn Sie die Details wie das gleitende Durchschnittsintervall oder die Namen nicht angeben müssen, können Sie auf Design gt klicken. Diagramm-Element hinzufügen gt Trendline gt Moving Average für das sofortige Ergebnis. Das Fenster "Format Trendline" wird auf der rechten Seite des Arbeitsblatts in Excel 2013 geöffnet und das entsprechende Dialogfeld wird in Excel 2010 und 2007 angezeigt. Um Ihren Chat zu verfeinern, können Sie auf die Registerkarte Fill amp Line oder Effects wechseln Das Format Trendline-Fenster und spielen mit verschiedenen Optionen wie Linientyp, Farbe, Breite, etc. Für eine leistungsstarke Datenanalyse, können Sie ein paar gleitende durchschnittliche Trendlinien mit unterschiedlichen Zeitintervallen hinzufügen, um zu sehen, wie der Trend entwickelt. Der folgende Screenshot zeigt die 2 Monate (grün) und 3 Monate (brickrot) gleitenden Durchschnitt Trendlinien: Nun, das ist alles über die Berechnung der gleitenden Durchschnitt in Excel. Das Beispielarbeitsblatt mit den gleitenden Durchschnittsformeln und der Trendlinie ist zum Download verfügbar - Moving Average Kalkulationstabelle. Ich danke Ihnen für das Lesen und freuen uns auf Sie nächste Woche Sie könnten auch interessiert sein an: Ihr Beispiel 3 oben (Get gleitenden Durchschnitt für die letzten N Werte in einer Zeile) arbeitete perfekt für mich, wenn die ganze Zeile Zahlen enthält. Ich tue dies für meine Golf-Liga, wo wir einen 4-Wochen-Rolling-Durchschnitt verwenden. Manchmal fehlen die Golfer also statt einer Punktzahl, werde ich ABS (Text) in die Zelle legen. Ich möchte noch die Formel für die letzten 4 Punkte zu suchen und nicht zählen die ABS entweder im Zähler oder im Nenner. Wie modifiziere ich die Formel, um dies zu erreichen Ich versuche, eine Formel zu erstellen, um den gleitenden Durchschnitt für 3 Periode zu erhalten, schätzen, wenn Sie helfen können pls. Datum Produkt Preis 10/1/2016 A 1.00 10/1/2016 B 5.00 10/1/2016 C 10.00 10/2/2016 A 1.50 10/2/2016 B 6.00 10/2/2016 C 11.00 10/3/2016 A 2.00 3/3/2016 B 15.00 10/3/2016 C 20.00 10/4/2016 A 4.00 10/4/2016 B 20.00 10/4/2016 C 40.00 10/5/2016 A 0.50 10/5/2016 B 3,00 10/5/2016 C 5,00 10/6/2016 A 1,00 10/6/2016 B 5,00 10/6/2016 C 10,00 10/7/2016 A 0,50 10/7/2016 B 4,00 10/7/2016 C 20,00 Exploration der exponentiell gewichteten Moving Average Volatilität ist die häufigste Maßnahme für das Risiko, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, finden Sie unter Verwenden von Volatilität, um zukünftiges Risiko zu messen.) Wir verwendeten Googles tatsächlichen Aktienkursdaten, um die tägliche Volatilität basierend auf 30 Tagen der Bestandsdaten zu berechnen. In diesem Artikel werden wir auf einfache Volatilität zu verbessern und diskutieren den exponentiell gewichteten gleitenden Durchschnitt (EWMA). Historische Vs. Implied Volatility Erstens, lassen Sie diese Metrik in ein bisschen Perspektive. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit ist Prolog Wir messen Geschichte in der Hoffnung, dass es prädiktive ist. Die implizite Volatilität dagegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Erkenntnisse siehe Die Verwendungen und Grenzen der Volatilität.) Wenn wir uns auf die drei historischen Ansätze (auf der linken Seite) konzentrieren, haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Berechnen die periodische Rendite. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rendite in kontinuierlich zusammengesetzten Ausdrücken ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. H. Preis heute geteilt durch den Preis gestern und so weiter). Dies erzeugt eine Reihe von täglichen Renditen, von u i bis u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. Wir haben gezeigt, dass die einfache Varianz im Rahmen einiger akzeptabler Vereinfachungen der Mittelwert der quadratischen Renditen ist: Beachten Sie, dass diese Summe die periodischen Renditen zusammenfasst und dann diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, seine wirklich nur ein Durchschnitt der quadrierten periodischen kehrt zurück. Setzen Sie einen anderen Weg, jede quadrierte Rückkehr wird ein gleiches Gewicht gegeben. Wenn also alpha (a) ein Gewichtungsfaktor (speziell eine 1 / m) ist, dann sieht eine einfache Varianz so aus: Die EWMA verbessert die einfache Varianz Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Yesterdays (sehr jüngste) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch Verwendung des exponentiell gewichteten gleitenden Mittelwerts (EWMA), bei dem neuere Renditen ein größeres Gewicht auf die Varianz aufweisen, festgelegt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Die als Glättungsparameter bezeichnet wird. Lambda muss kleiner als 1 sein. Unter dieser Bedingung wird anstelle der gleichen Gewichtungen jede quadratische Rendite durch einen Multiplikator wie folgt gewichtet: Beispielsweise neigt die RiskMetrics TM, eine Finanzrisikomanagementgesellschaft, dazu, eine Lambda von 0,94 oder 94 zu verwenden. In diesem Fall wird die erste ( (1 - 0,94) (94) 0 6. Die nächste quadrierte Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von exponentiell in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muß) des vorherigen Gewichtes. Dies stellt eine Varianz sicher, die gewichtet oder zu neueren Daten voreingenommen ist. (Weitere Informationen finden Sie im Excel-Arbeitsblatt für die Googles-Volatilität.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google wird unten angezeigt. Einfache Volatilität wiegt effektiv jede periodische Rendite von 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre tägliche Aktienkursdaten, das sind 509 tägliche Renditen und 1/509 0,196). Aber beachten Sie, dass die Spalte P ein Gewicht von 6, dann 5,64, dann 5,3 und so weiter. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die Summe der ganzen Reihe (in Spalte Q) haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und der EWMA im Googles-Fall? Bedeutend: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (Details siehe Tabelle). Offenbar ließ sich die Googles-Volatilität in jüngster Zeit verringern, so dass eine einfache Varianz künstlich hoch sein könnte. Die heutige Varianz ist eine Funktion der Pior Tage Variance Youll bemerken wir benötigt, um eine lange Reihe von exponentiell sinkenden Gewichte zu berechnen. Wir werden die Mathematik hier nicht durchführen, aber eine der besten Eigenschaften der EWMA ist, daß die gesamte Reihe zweckmäßigerweise auf eine rekursive Formel reduziert: Rekursiv bedeutet, daß heutige Varianzreferenzen (d. h. eine Funktion der früheren Tagesvarianz) ist. Sie können diese Formel auch in der Kalkulationstabelle zu finden, und es erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der gestrigen Abweichung (gewichtet mit Lambda) plus der gestrigen Rückkehr (gewogen von einem Minus-Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtet Varianz und gestern gewichtet, quadriert zurück. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. wie RiskMetrics 94) deutet auf einen langsameren Abfall in der Reihe hin - in relativer Hinsicht werden wir mehr Datenpunkte in der Reihe haben, und sie fallen langsamer ab. Auf der anderen Seite, wenn wir das Lambda reduzieren, deuten wir auf einen höheren Abfall hin: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, so dass Sie mit seiner Empfindlichkeit experimentieren können). Zusammenfassung Volatilität ist die momentane Standardabweichung einer Aktie und die häufigste Risikomessung. Es ist auch die Quadratwurzel der Varianz. Wir können Varianz historisch oder implizit messen (implizite Volatilität). Bei der historischen Messung ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Varianz ist alle Renditen bekommen das gleiche Gewicht. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch weit entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch Zuordnen von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße, sondern auch mehr Gewicht auf neuere Renditen. (Um ein Film-Tutorial zu diesem Thema zu sehen, besuchen Sie die Bionic Turtle.)
No comments:
Post a Comment